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Stochastic model for tunneling processes: The question of superluminal behavior
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A stochastic model for tunneling processes that is based on a close correspondence between
quantum relativistic and telegrapher’s equations is proposed along the lines of a procedure similar
to the one already adopted by Kac [Rocky Mountain J. Math 4, 497 (1974)]. It is hypothesized that
reversals of motion imply the inversion of the (imaginary) time rather than of the space, as in the
ordinary allowed processes. In this way, superluminal behavior can be predicted in limiting cases.
The plausibility of the superluminal motions observed is then discussed on the basis of a signal
analysis along the lines of the Sommerfeld-Brillouin criterion which has been suitably modified.

PACS number(s): 03.40.Kf, 02.50.—r, 84.40.Cb

I. INTRODUCTION

It is well known that the upper limit of a signal veloc-
ity is represented by the light speed, as demonstrated for
wave propagation by Sommerfeld, since the beginning of
the century [1]. Similar conclusions can be drawn also
for the propagation of a signal on an electric line [2] and
for the motion of a relativistic particle. Such arguments,
however, are not clearly applicable to classically forbid-
den situations such as tunneling processes or evanescent
waves. Indeed, in the recent literature, a number of re-
sults have been reported for tunneling and/or evanes-
cent waves which demonstrate the obtaining of superlu-
minal behavior [3-5]; but it is still an open question as
to whether these results can be considered as referring
to a genuine signal velocity or not [6]. As we shall see
further on, a crucial point is represented by the fact that
any practical signal necessarily has a finite spectral ex-
tension.

Dealing with the microwave simulation of tunneling, a
theoretical interpretation was modeled on the basis of a
path-integral solution of the telegrapher’s equation [7],
analytically continued to imaginary time [8]. In that
framework, it was shown that in tunneling processes the
effective velocity turns out to be increased by a dissi-
pationlike parameter and can actually exceed the light
velocity. What emerges from such an analysis is the in-
verted role of the “dissipation” that, in tunneling, acts
as an accelerator of the motion [9].

Section II is devoted to establishing a close corre-
spondence between quantum relativistic motion (Klein-
Gordon equation) and wave propagation in the presence
of dissipation (telegrapher’s equation). Following the
same procedure adopted by Kac [10] in order to indi-
viduate a stochastic model related to the telegrapher’s
equation, we shall try, in Sec. III, to find a stochastic
model related to tunneling processes. A possible inter-
pretation of these facts is given in Sec. IV by analyzing
the signal velocity in tunneling simulations according to
the Sommerfeld-Brillouin method suitably modified. The
results are then discussed in Sec. V.
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II. QUANTUM RELATIVISTIC MOTION AND
WAVE PROPAGATION

Let us summarize the correspondences between quan-
tum relativistic equations and wave propagation estab-
lished until now. The analogy between particle motion
and electromagnetic wave propagation can be first sup-
ported on the basis of a similarity in the dispersion rela-
tion and of a close correspondence in the wave equations.
When dealing with waveguides, Feynman, Leighton, and
Sands [11] made the interesting remark that the disper-
sion relation for a rectangular waveguide is formally iden-
tical to that of a relativistic particle provided that the
proper substitutions are made. Specifically, while the
wave number k for a TEy; mode propagation is given
by k = \/w?/c? —72/b? (w is the angular frequency, c
the light velocity, and b the width of the waveguide),
the one corresponding to a particle of rest mass m is
given by k = /w?/c2 — m2c2/h? where fw is the en-
ergy of the particle including the rest energy mc?. These
relations are clearly coincident when the substitution
w/b < mc/h is made.

Subsequently, a relation was established between the
quantum relativistic motion and the telegrapher’s equa-
tion which, if analytically continued, results in the Dirac
equation [12]. In the same way it is possible to make a
connection between the Klein-Gordon equation, for the
motion of a particle in the z coordinate,

1 0% 0% mic?

c 8tz ~ 9z A2

and the telegrapher’s equation

9 (blockI, inFig. 1), (1)

1 8°F 8?F  2a OF

ﬁ W = ) — ’U_2 —5-{ (blOCk III, in Flg. 1) . (2)
Here, F represents the voltage or the current in the case
of an electric line and v is its propagation velocity in the
z direction; a is a positive constant which accounts for
dissipation [13]. To connect Egs. (1) and (2), we perform
a phase transformation on v letting, as in Ref. [12],
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FIG. 1. Block diagram showing the connection between
quantum relativistic and telegrapher’s equations.

2
W(@,t) = u(, t) exp (- e t) . (3)
By substituting into Eq. (1) we obtain
1 8%u O%u  2im Ou N
5—2“ &‘E = a-m—z‘ T E (blOCk II, m Flg 1) ) (4)

which is equivalent to Eq. (2) with the identifications

ue— F, ce—v, mc? e ika.

We can also make the connection through an imagi-
nary time variable considering that, in consequence, also
v (= dz/dt) takes an imaginary factor. Therefore the
telegrapher’s equation appears to be a suitable tool for
studying the propagation of an electromagnetic pulse
which can simulate the motion of a relativistic particle

(8]-

Referring to the scheme of Fig. 1, we see that the above
correspondence connects block I (the Klein-Gordon equa-
tion) and block III (the telegrapher’s equation) through
the equation of block II, which can be considered the
analytical continuation of the telegrapher’s equation,
namely,

1 22_2 _ O%u 2ia Ou
c? Ot2 ~ 9x? cz Ot

with the obvious identification u = F. Note that Eq. (5)
is derived from Eq. (1), through the phase transforma-
tion (3), by identifying mc? with %a. So, starting from
the Klein-Gordon equation, by applying phase transfor-
mation (3), we obtain the telegrapher’s equation and its
analytical continuation for imaginary and real values of
the energy mc?, respectively.

It is interesting to note that Eq. (5) is exactly that
we considered as capable of explaining delay-time results
in tunneling cases [8] where we considered the analyti-
cal continuation of a solution of Eq. (2) in order to de-
scribe the motion of the beat envelope of two waves of
slightly different frequencies. However, it can be shown
that such a solution is also the solution of the analyti-

(block II, in Fig. 1) (5)
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cally continued equation, just Eq. (5). We thus arrive at
the result that the equation for tunneling motions can be
directly derived from the Klein-Gordon equation with-
out analytical continuation, block I — block II, pro-
vided that we are considering imaginary time and veloc-
ity. Note that, while the Klein-Gordon equation of block
Iis of the bradyonic type, the equation of block II is of the
tachyonic type, since the resulting motion is not limited
to the light speed c, but can exceed this limit [14].

Now, in order to complete the loop scheme of Fig. 1,
let us consider the analytical continuation of the Klein-
Gordon equation (1). From the changes t — —it and
¢ — ic we immediately have

18y _ 89  m
2Bz 0z | B2

which is the Klein-Gordon equation for tachyons [15]:
in this case, the dispersion relation is given by k£ =
Vw?/c2 + m2c2/h2. In this way we obtained the con-
nection between blocks I and IV in Fig. 1.

Since tachyonic properties have been ascribed to elec-
tromagnetic evanescent waves [16], there should be a way
to connect Eq. (6) to the telegrapher’s equation. This
can be done by considering the transformation

9 (blockIV, inFig.1), (6)

w(e,t) = u(e ) exp (7 m,‘:f"‘) (7)

which is similar to the transformation of Eq. (3). Here,
however, the exponential function represents an attenua-
tion of the wave function, and not merely a phase trans-
formation: as we shall see further on, this fact repre-
sents an important practical limitation. [The lower sign
in the exponent of Eq. (7), as well as in (8), has to
be taken when we consider the inverse transformation,
namely, from block III to block IV.] Now, by substitut-
ing in Eq. (6), we obtain

1 0%2u H%u 2m Ou -

c—z W = ﬁ + T 'a—t (blOCk III, m Flg 1) ) (8)
which is equivalent to the telegrapher’s equation (2) with
the identifications
mc? «—— Fha.

u+—F, c+— v,

These are similar to those relative to Eq. (4), apart from
the absence of the imaginary unity. The connection be-
tween blocks IV and III of Fig. 1 is thus obtained but
in order to arrive at the equation for tunneling processes
(block II) we have to repeat an analytical continuation
(t — —it, v — 1v).

Once the loop of Fig. 1 is completed, we wonder what
kind of motion corresponds to the tachyonic equations
(blocks II and IV), since the motion relative to the brady-
onic ones (blocks I and III) is well known. The latter is
sketched in Fig. 2 by a continuous line, and represents
the stochastic model first adopted by Kac [10] in order
to reobtain the telegrapher’s equation (2), as well as a
solution of the Klein-Gordon equation in the bradyonic
case [17].

We recall that, according to Kac’s procedure, the
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FIG. 2. Trajectory of a stochastic motion, relative to the
F™ function, for a classically allowed case (continuous line)
and a forbidden—or tunneling—case (dashed line). In the
first case, we have a reversal of the motion in the z space
(bradyonic motion), while in the second case the reversal hap-
pens in the t (imaginary) time (tachyonic motion).

stochastic motion as depicted in Fig. 2 gives rise to two
linear differential equations [Egs. (14) and (15) in Ref.
[10] where @ has the dimensions of (time)™?]

oF oG

5t = Voz (92)
oG OF
E = 'U—a—a—: - 2aG N (9b)

where (see later for the definition of F* and F ™)
1, o 1,
F=§(F +F7), G=5(F -F7),

From a further differentiation, we then obtain

2a OF

19*°F _ 9*°F 2a 0F
v 6t’

T - = —_
v Ot2 oz2

that is, Eq. (2).

According to the analysis of Ref. [18], we may as-
sume that a description of the tunneling processes can
be achieved by inverting = with ¢, that is, by considering
trajectories of the type sketched in Fig. 2 by a dashed
line. In this way we will obtain a new pair of differen-
tial equations in place of Egs. (9a) and (9b) and a new
equation of motion.

(10)

III. DERIVATION OF A NEW EQUATION OF
MOTION

Following Kac’s procedure, we want to derive the prob-
ability that the system has spent a certain time t after
a given distance z. As in Ref. [10], we introduce the
random variable

_J 1 withprobability 1 —aAxz
€=\ =1 with probability Az
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where @ has the dimensions of (length)™!. So, with ref-
erence to the trajectory represented by the dashed line
in Fig. 2, the effective time, the time lapsed during the
motion, can be expressed as

Az
Tn27(1+61+€1€2+"'),

[compare with Eq. (16) which, on the contrary, repre-
sents the effective displacement in normal processes].
Let us now consider the function

Fr = (¢(t+Tn))

Az A '
=<¢[t+“§+Tw€1(1+€2+5253+"')]>

which, by introducing the two probabilities associated €,
becomes

F,f:aAz<¢[t+%-%f(1+62+6263+...)]>

+(1 - &Am)<¢ [t + é;—

+%(1+62+€263+'-')]> .
This can be rewritten as
Fl(t) = aAzF_, (t + %}E)
+(1 —aAz)Fr_, (t + %”5) )
and, analogously, we obtain
F7(t) =aAzF}l | (t - %)
+(1 - &Az)F_, (t - —Auf) .

The two previous equations can be rewritten as

Ff(t) - Fi ()
Az

_Fr (t+4%) -FL.@)
- Az

—GFY (t + éf) +aF;, (t + —Av—x)
v
and

Fo(t)—F,_,(t)
Az

_ F‘n_—-l (t_ 'AT:E) _Fn_—l(t)
- Az

+aF+ (t - —A—f) —aF_, (t - éf)
v v
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and, passing to the limit, we get

+ +
__3(; = % _.__agt —aFt +aF~ , (11a)

- 108F- .
%:_;wqtaﬁ—w . (11b)

In the present model, as well as in Kac’s, the functions
F* and F~ represent the waves traveling in the positive
and negative directions along the x coordinate, respec-
tively, that is, the forward and backward motion. As
before, with F = (F* + F~)/2 and G = (F* — F7)/2,
from the sum and the difference of Egs. (11a) and (11b),
we obtain

8F 109G
= = 12
oz v Ot ' (12a)
oG 1 0F
— = - — —2aG. 12b
oz v Ot 2aG (12b)
By a further differentiation, we have
02F_182F_%@_6_G__1_82F_&8_F (13)
8z? ~ v? Ot2 v 8t  v? Ot? oz

Equations (12) and (13) rightfully correspond to Egs. (9)
and (10) once the substitution ¢ +— z is made. How-
ever, Eq. (13) is not equivalent to Eq. (5) [analytically
continued from Eq. (2)], as we expected, even if Eq. (13)
also represents a tachyonic motion [19].

In order to reobtain Eq. (5), we could operate directly
on Egs. (9a) and (9b) with the transformation v — v
and ¢t — —it. In this way, we arrive at the following
equation:

1 8°F _ 8*F | 2ia OF

v2 Ot2 Oz * v2 Ot

which is the same as Eq. (5), with u +— F and ¢ +— v.
As for the shape of the trajectory, this is not perfectly
identified, even if we can argue that, in imaginary time
and imaginary velocity, it should be similar to what is
schematized in Fig. 2 by a dashed line. In fact, since the
product v (—it) = vt = z is real, if we simultaneously
change the sign of v and ¢, their product continues to be
real and positive, according to the trajectory represented
by the dashed line in Fig. 2.

In order to establish a more direct connection of this
kind of trajectory with Eq. (14), we have to consider a
generalization of Kac’s analysis as follows. Let us con-
sider the following functions [instead of Egs. (4) and (5)
in Ref. [10]]

(block II, in Fig. 1) (14)

aFf(z) = (¢(z + Sn)) ,
BF; (z) = (¢(z — Sn)) ,

where o and 3 are two coefficients such that a + 3 =1
and S, is the effective displacement

(15a)
(15b)

S’n = UAt(]. + €1 + €162 + - - ) . (16)

The quantity ¢; = £1 is a random variable, and the val-

ues *1 are associated with the probabilities 1 — aAt and
aAt, respectively [10]. Following the same procedure of
Ref. [10] and by passing to the limit, we arrive at the two
following relations [instead of Egs. (11) and (12) in Ref.

(10]]

OF* OF+

- = _ + - 1
a— vo—m aaF ™ + afBF (17a)
OF~ OF~ + -
= — — . 17b
3 vf Py + aaF aBF (17b)
By adding these equations, we obtain
2((,‘¢F++,8F_)='u£(al7'+—,3}7'_) (18)
ot oz
and by subtracting
0 + —
5\ eF " —BF7)

- u,%(aw +BF7) —2a(aF" —BF7). (19)

Now, by putting aF* + 3F~ = F,p and aF* — BF~ =
Go,3, we obtain [from Egs. (18) and (19)] the following
equations:

0

0
aFa’ﬁ = ’Ua—:r‘Ga’ﬁ 5 (203)
o] o
a = "‘—Fa - a )
51 0B = Vg Fap —20Gap (20b)

which are formally identical to Egs. (9a) and (9b). By
further differentiation and substitution we obtain a gen-
eralized telegrapher’s equation

1 92 82 2a O

ot o len = ggafes = 3 gyfas. (1)

which coincides with Eq. (2) for « = 8 = 1/2. In this
case the functions F, g and G4 g describe standing waves
[20].

Now let us reconsider the two first members of Eq.
(13)—derived from the special stochastic motion de-
scribed above—which we rewrite here in a generalized
way as

1 92 2 2a 0

— = = — F, — — Gagp- 22

’1)2 atz a,B 8332 B + v 6t a,B ( )
This equation can be compared with Eq. (21)—derived
from the usual stochastic motion—which, in the limit of
a — 1and B8 — 0 (in this limit we have F g, Go,3 —
Ft), is written as

2 2
L0 g O pr_200 oy
v2 0t2 Oz? v2 Ot ’
or its analytical continuation (¢ — —it, v — iv)—that

is, the equation for tunneling processes—as

1 0%, 0 2ia 8

— = ——Ft4+— —Ft. 24

R TE 822~ T ot (24)
In the same limit («@ — 1, 8 — 0) we rewrite Eq.
(22)—for the special stochastic motion—as

(23)
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lz 8_2 Ft = 22_ Ft + 2_a f?_
v2 Ot2? Ox? v Ot
Clearly, Egs. (24) and (25) are equivalent for & = ia/v,
which is a way to do the analytical continuation.

In this way, we have established a direct connection be-
tween the tachyonic-type trajectory (the dashed line in
Fig. 2) and the telegrapher’s equation analytically con-
tinued in the limit of @« — 1 and 8 — 0, that is, for
a pure progressive wave like the one that we have con-
sidered for interpreting experimental results of tunneling
simulations [8] which, in some cases have revealed super-
luminal behavior [3-5]. In these experiments, the delay
time has been identified with the modulation phase shift,
interpreted as the transition or traversal time of the bar-
rier. This procedure, however, could cast some doubts
on the applicability of the obtained results to a true sig-
nal delay. Just this last aspect of the problem deserves a
deeper investigation, since the arguments reported until
now in the literature regarding propagation in the pres-
ence of evanescent waves are not exhaustive.

F+. (25)

IV. THE SIGNAL VELOCITY IN TUNNELING

According to Fox, Kuper, and Lipson [21], the front
edge of a tachyon wave packet will never exceed the light
speed even though the group velocity is greater than light
speed. Analogous conclusions have been drawn also in
more recent works [22,23]. As anticipated earlier, it is
well established that the upper limit of a signal veloc-
ity is represented by the light speed, but it is not fully
understood whether these conclusions hold true also for
tunneling processes and/or propagation in the presence
of evanescent waves [24].

Following Brillouin [25], the propagation of a pulse—
like a step function equal to exp(—iw;t) for ¢ > 0 and
zero for t < 0—along the z direction is described by a
contour integral in the complex plane of w as

Y(x,t) = —R /eXP[; —*2)] g , (26)

W — w;

where v is a closed path including, or not, the pole
at w;, depending on the sign of the imaginary part of
the exponent. The wave number k for a waveguide is
given by k = (1/c)y/w? — w2, wo being the angular cut-
off frequency of the waveguide. For w —+ oo we have
k — w/c, and the exponential in Eq. (26) becomes
exp[—iw(t — z/c)]. This implies that integral (26) is zero
for t < x/c and that the first forerunner of the signal
cannot arrive before a time given by ¢, = z/c.

An evaluation of integral (26) can be made using the
saddle point approximation and, to this end, we have to
determine the saddle points from the stationary condition
of the exponent, namely,

x dw wé
t  dk w2’
This means that the group velocity v, = dw/dk is less
than ¢ for w > wog, is zero at the cutoff for w = wy,
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is imaginary below the cutoff for w < wg and, for w <
wo/v/2, is greater than c in absolute value. For imaginary
w we always have a real group velocity greater than c.
The coordinates of the saddle points of the exponential
in Eq. (26) are given by

we =4 —0 (27)
which for t > x/c are situated on the real axis of w and

the integration of Eq. (26) can be readily performed [25].
This result can be expressed, for A =t/to > 1, as

Pz, t) = F(to,a}o,mi,A)(A2 - 1)1/4

X cos (woto\/ A2 —1— 7r/4) , (28)

where the function F' is given by

wo Wy
F(to,wo,w;, A) = V 2ty Azwg +(1- AZ)wl?

1
- AV 271'th0 ’

(29)

where the last term holds for w; ~ wg.

For t < z/c, the saddle points (27) are situated on the
imaginary axis of w, and integral (26) is zero, as can be
recognized by deforming the original integration path vy
on the real axis of w (from —oo to +00) into a semicircle of
radius R in the upper plane of complex w, with R — oo
[25]. If, however, we consider a finite extension in the w
range, the situation changes. In other words, by dividing
the range of integration in the following way:

wiy oo

dw +

oo —w1
/ dw = / dw +
—o0 — oo —wy wi

the intermediate integral will, in general, be different
from zero. In the case of evanescent waves, we rewrite
Eq. (26) as

1 “ exp[—
t) ~ —R
Y@t = gRe [ )

w — w;

dw =0,

iwt — k) dw . (30)

where £ = y/wg — w?/c. For physical reasons, the sign of
k is determined in order to have amplitude attenuation
with increasing z. In this way, as given by (27), the
saddle point is situated on the positive imaginary axis.
When w; — oo, the integrand tends uniformly to zero
over a semicircle whose radius R tends to co in the upper
plane of w and the integral—deforming in this way the
contour of integration—goes to zero. However, if we limit
the range of integration by selecting w; ~ wp (the only
range in which the evanescent waves are present), the
integral is different from zero and an estimate of Eq. (30)
can be made again by the saddle point approximation,
obtaining [26]
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FIG. 3. Behavior of the signal shape computed according
to Egs. (28) and (31) as a function of the normalized time
A = t/to (to = z/c) for w; less than but comparable to the
cutoff (angular) frequency wo = 1. Note that the contribution
for A <1 strongly depends on the value woto, that is, on the
distance z from the launcher, and tends to disappear when =
is of the order of a few wavelengths.

Y(x,t) = —F(to,wo,w;, A)(1 — A%)1/*
X exp (—wgtm/ 1— AZ) , (31)

where now A =t/tg < 1 and F is still given by Eq. (29).
This result is shown in Fig. 3, together with the result
relative to the case t > x/c, obtained from Eq. (28). Note
that, because of the dependence on woto (= 27wz /A¢) of
the exponent in Eq. (31), the contribution for t/ty < 1
is strongly attenuated by increasing the distance z, so
that for sufficiently large distances—say of a few cutoff
wavelengths Ag—the superluminal contribution becomes
quite negligible and we again obtain the usual result that
nothing arrives before %,.
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V. CONCLUSIONS

We have shown that, by limiting the range of integra-
tion in the frequency domain in the case of evanescent
waves, we can actually obtain that “something” arrives
before the arrival of the usual forerunner, that is, for
0 <t < z/c and for short distances. This contribution
rightly tends to zero with an increase in the distance
and is zero if the domain of integration is extended from
—o00 to +00, as predicted by Sommerfeld’s and Brillouin’s
analyses. We are aware that a finite spectral extension
does not represent a true (front edge) signal which, on
the contrary, requires an infinite and continuous spec-
trum and will obey the usual nonsuperluminal behavior.
By limiting the spectral extension, even if the outside
spectral components are small, we find that the signal is
profoundly modified since the temporal and spatial ex-
tension, initially supposed finite, becomes infinite. In this
way, the resulting ¥ (z,t) does not represent a true sig-
nal, even if its profile is traveling with a group velocity
vg > ¢ [21] without contradiction with relativity [27]. In
our case (tunneling simulation), the choice of limiting the
frequency domain is supported by the fact that we are
dealing with evanescent waves, the existence of which is
confined by the cutoff frequency, namely, —wy < w < wp.
As mentioned before [24], such waves are not properly
propagating. However, there is no doubt that, in the ex-
periments to which we are referring [3-5], “something”
is propagated even if the spectral width of the signal is
well confined in the w domain of evanescent waves. For
an estimate of the order of magnitude of the time scale
required for the observation of superluminal effects, the
quantity woto (ranging from 0 to 8 in Fig. 3) can be used.
Since the exponent in Eq. (31) has to be of the order of
some units so as to have a non-negligible amplitude of
1, this fact implies that for microwave experiments, with
wo = 101° Hz, the resulting time scale is in the range of
nanoseconds, precisely in agreement with the experimen-
tal results of Refs. [3] and [5]. For a photon tunneling
experiment, fiwg is of the order of a few eV and the time
scale is femtoseconds, in agreement with observations of
Ref. [4]. Clearly, this time scale tends to become pro-
hibitive with an increase in the energy. For an experi-
ment with relativistic electrons, for example, we have to
consider the quantity mc?t/A which, for mc? ~ 0.5 MeV,
gives [according to Eq. (7)] a time scale of the order of
1072 sec. So the theoretical model elaborated previously
on the basis of a special stochastic motion (Fig. 2) turns
out to be more physically grounded on the signal analysis
in the presence of evanescent waves which, for short dis-
tances (or short time), demonstrates that superluminal
behavior can really be observed and explained.
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